Search results

1 – 10 of 412
Article
Publication date: 10 April 2017

Mica Grujicic, S. Ramaswami and Jennifer Snipes

In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl…

Abstract

Purpose

In the recent work, a new blast-wave impact-mitigation concept involving the use of a protective structure consisting of bimolecular reactants (polyvinyl pyridine+cyclohexyl chloride), capable of undergoing a chemical reaction (to form polyvinyl pyridinium ionic salt) under shockwave loading conditions, was investigated using all-atom reactive equilibrium and non-equilibrium molecular-dynamics analyses. The purpose of this paper is to reveal the beneficial shockwave dispersion/attenuation effects offered by the chemical reaction, direct simulations of a fully supported single planar shockwave propagating through the reactive mixture were carried out, and the structure of the shock front examined as a function of the extent of the chemical reaction (i.e. as a function of the strength of the incident shockwave). The results obtained clearly revealed that chemical reactions give rise to considerable broadening of the shockwave front. In the present work, the effect of chemical reactions and the structure of the shockwaves are investigated at the continuum level.

Design/methodology/approach

Specifically, the problem of the (conserved) linear-momentum accompanying the interaction of an incident shockwave with the protective-structure/protected-structure material interface has been investigated, within the steady-wave/structured-shock computational framework, in order to demonstrate and quantify an increase in the time period over which the momentum is transferred and a reduction in the peak loading experienced by the protected structure, both brought about by the occurrence of the chemical reaction (within the protective structure).

Findings

The results obtained clearly revealed the beneficial shock-mitigation effects offered by a protective structure capable of undergoing a chemical reaction under shock-loading conditions.

Originality/value

To the authors’ knowledge, the present manuscript is the first report dealing with a continuum-level analysis of the blast-mitigation potential of chemical reactions.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 October 2016

Mica Grujicic, Jennifer Snipes and S. Ramaswami

The purpose of this paper is to introduce and analyze a new blast-wave impact-mitigation concept using advanced computational methods and tools. The concept involves the use of a…

Abstract

Purpose

The purpose of this paper is to introduce and analyze a new blast-wave impact-mitigation concept using advanced computational methods and tools. The concept involves the use of a protective structure consisting of bimolecular reactants displaying a number of critical characteristics, including: a high level of thermodynamic stability under ambient conditions (to ensure a long shelf-life of the protective structure); the capability to undergo fast/large-yield chemical reactions under blast-impact induced shock-loading conditions; large negative activation and reaction volumes to provide effective attenuation of the pressure-dominated shockwave stress field through the volumetric-energy storing effects; and a large activation energy for efficient energy dissipation. The case of a particular bimolecular chemical reaction involving polyvinyl pyridine and cyclohexyl chloride as reactants and polyvinyl pyridinium ionic salt as the reaction product is analyzed.

Design/methodology/approach

Direct simulations of single planar shockwave propagations through the reactive mixture are carried out, and the structure of the shock front examined, as a function of the occurrence of the chemical reaction. To properly capture the shockwave-induced initiation of the chemical reactions during an impact event, all the calculations carried out in the present work involved the use of all-atom molecular-level equilibrium and non-equilibrium reactive molecular-dynamics simulations. In other words, atomic bonding is not pre-assigned, but is rather determined dynamically and adaptively using the concepts of the bond order and atomic valence.

Findings

The results obtained clearly reveal that when the chemical reactions are allowed to take place at the shock front and in the shockwave, the resulting shock front undergoes a considerable level of dispersion. Consequently, the (conserved) linear momentum is transferred (during the interaction of the protective-structure borne shockwaves with the protected structure) to the protected structure over a longer time period, while the peak loading experienced by the protected structure is substantially reduced.

Originality/value

To the authors’ knowledge, the present work is the first attempt to simulate shock-induced chemical reactions at the molecular level, for purposes of blast-mitigation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving…

Abstract

Purpose

In order to help explain experimental findings related to the stabbing- and ballistic-penetration resistance of flexible body-armor, single-yarn pull-out tests, involving specially prepared fabric-type test coupons, are often carried out. The purpose of this paper is to develop a finite-element-based computational framework for the simulation of the single-yarn pull-out test, and applied to the case of Kevlar® KM2 fabric.

Design/methodology/approach

Three conditions of the fabric are considered: neat, i.e, as-woven; polyethylene glycol (PEG)-infiltrated; and shear-thickening fluid (STF)-infiltrated. Due to differences in the three conditions of the fabric, the computational framework had to utilize three different finite-element formulations: standard Lagrangian formulation for the neat fabric; combined Eulerian-Lagrangian formulation for the PEG-infiltrated fabric (an Eulerian subdomain had to be used to treat the PEG solvent/dispersant); and combined continuum Lagrangian/discrete-particle formulation for the STF-infiltrated fabric (to account for the interactions of the particles suspended in PEG, which give rise to the STF character of the suspension, with the yarns, the particles had to be treated explicitly).

Findings

The results obtained for the single-yarn pull-out virtual tests are compared with the authors’ experimental counterparts, and a reasonably good agreement is obtained, for all three conditions of the fabric.

Originality/value

To the authors’ knowledge, the present work represents the first attempt to simulate single-yarn pull-out tests of Kevlar® KM2 fabric.

Details

International Journal of Structural Integrity, vol. 8 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 June 2017

Mica Grujicic, Jennifer Snipes and S. Ramaswami

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being…

Abstract

Purpose

The purpose of this paper is to model a nacre-like composite material, consisting of tablets and polyurea tablet/tablet interfaces, B4C. This composite material is being considered in the construction of the so-called backing-plate, a layer within a multi-functional/multi-layer armor system.

Design/methodology/approach

Considering the basic functions of the backing-plate (i.e. to provide structural support for the ceramic-strike-face and to stop a high-velocity projectile and the accompanying fragments) in such an armor system, the composite-material architecture is optimized with respect to simultaneously achieving high flexural stiffness and high ballistic-penetration resistance. Flexural stiffness and penetration resistance, for a given architecture of the nacre-like composite material, are assessed using a series of transient non-linear dynamics finite-element analyses. The suitability of the optimized composite material for use in backing-plate applications is then evaluated by comparing its performance against that of the rolled homogeneous armor (RHA), a common choice for the backing-plate material.

Findings

The results obtained established: a trade-off between the requirements for a high flexural stiffness and a high ballistic-penetration resistance in the nacre-like composite material; and overall superiority of the subject composite material over the RHA when used in the construction of the backing-plate within multi-functional/multi-layer armor systems.

Originality/value

This study extends the authors previous research on nacre-mimetic armor to optimize the architecture of the armor with respect to its flexural stiffness and ballistic-penetration resistance, so that these properties could be increased over the levels attained in the current choice (RHA) for the backing layer of multi-functional/multi-layer armor.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 February 2017

Mica Grujicic, S. Ramaswami and Jennifer Snipes

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form…

Abstract

Purpose

Nacre is a biological material constituting the innermost layer of the shells of gastropods and bivalves. It consists of polygonal tablets of aragonite, tessellated to form individual layers and having the adjacent layers as well as the tablets within a layer bonded by a biopolymer. Due to its highly complex hierarchical microstructure, nacre possesses an outstanding combination of mechanical properties, the properties which are far superior to the ones that are predicted using techniques such as the rule of mixtures. Given these properties, a composite armor the structure of which mimics that of nacre may have improved performance over a monolithic armor having a similar composition and an identical areal density. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, an attempt is made to model a nacre-like composite armor consisting of B4C tablets and polyurea tablet/tablet interfaces. The armor is next tested with respect to impact by a solid right circular cylindrical (SRCC) rigid projectile, using a transient non-linear dynamics finite-element analysis. The ballistic-impact response and the penetration resistance of the armor are then compared with that of the B4C monolithic armor having an identical areal density. Furthermore, the effect of various nacre microstructural features (e.g. surface profiling, micron-scale asperities, mineral bridges between the overlapping tablets lying in adjacent layers, and B4C nano-crystallinity) on the ballistic-penetration resistance of the composite armor is investigated in order to identify an optimal nacre-like composite armor architecture having the largest penetration resistance.

Findings

The results obtained clearly show that a nacre-like armor possesses a superior penetration resistance relative to its monolithic counterpart, and that the nacre microstructural features considered play a critical role in the armor-penetration resistance.

Originality/value

The present work indicates that for a given choice of armor material, penetration resistance may be improved by choosing a structure resembling that of nacre.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 10 June 2016

William Terrill, Eugene A. Paoline and Jacinta M. Gau

This chapter seeks to illuminate the interconnectedness of procedural justice, use of force, and occupational culture in relation to police legitimacy.

Abstract

Purpose

This chapter seeks to illuminate the interconnectedness of procedural justice, use of force, and occupational culture in relation to police legitimacy.

Methodology/approach

The authors review the existing literature and offer an integrated methodological approach that would better assist researchers in their quest to enhance police legitimacy.

Findings

Using a systematic design that assesses police legitimacy from a variety of sources has the potential to help answer critical questions with regard to improving police practice.

Originality/value

This is a novel study approach, which has yet to be implemented but which may offer great insight with respect to improving police legitimacy.

Details

The Politics of Policing: Between Force and Legitimacy
Type: Book
ISBN: 978-1-78635-030-5

Keywords

Article
Publication date: 1 February 2016

Mica Grujicic, S Ramaswami, Jennifer Snipes, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

Fiber-reinforced armor-grade polymer-matrix composite materials with a superior penetration resistance are traditionally developed using legacy knowledge and trial-and-error…

290

Abstract

Purpose

Fiber-reinforced armor-grade polymer-matrix composite materials with a superior penetration resistance are traditionally developed using legacy knowledge and trial-and-error empiricism. This approach is generally quite costly and time-consuming and, hence, new (faster and more economical) approaches are needed for the development of high-performance armor-grade composite materials. One of these new approaches is the so-called materials-by-design approach. Within this approach, extensive use is made of the computer-aided engineering (CAE) analyses and of the empirically/theoretically established functional relationships between an armor-grade composite-protected structure, the properties of the composite materials, material microstructure (as characterized at different length-scales) and the material/structure synthesis and fabrication processes. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, a first step is made toward applying the materials-by-design approach to the development of the armor-grade composite materials and protective structures with superior ballistic-penetration resistance. Specifically, CAE analyses are utilized to establish functional relationships between the attributes/properties of the composite material and the penetration resistance of the associated protective structure, and to identify the combination of these properties which maximize the penetration resistance. In a follow-up paper, the materials-by-design approach will be extended to answer the questions such as what microstructural features the material must possess in order for the penetration resistance to be maximized and how such materials should be synthesized/processed.

Findings

The results obtained show that proper adjustment of the material properties results in significant improvements in the protective structure penetration resistance.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to apply the materials-by-design approach to armor-grade composite materials in order to help improve their ballistic-penetration resistance.

Details

International Journal of Structural Integrity, vol. 7 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Book part
Publication date: 7 May 2019

Nicholas P. Salter and Leslie Migliaccio

This chapter reviews previous research on allyship: non-minority individuals who choose to support minorities while working to end discrimination and prejudice. In particular, the…

Abstract

Purpose

This chapter reviews previous research on allyship: non-minority individuals who choose to support minorities while working to end discrimination and prejudice. In particular, the focus of this chapter is on how allyship applies to the workplace. We argue that allyship can be a diversity management tool to help reduce workplace discrimination.

Methodology

To explore this topic, we conducted a literature review on allyship in the workplace and synthesized previous research together. We examined research from both organizational and non-organizational settings.

Findings

Our review of previous literature is divided into three sections. First, we discuss what all entails allyship, including knowledge, communication, and, in particular, action. Next, we discuss the many outcomes previous research suggests comes from allyship (including benefits to other individuals, benefits to the overall culture, and benefits to the ally him or herself). Finally, we conclude with a discussion of who is likely to become an ally as well as the journey a person goes through to become a true ally.

Value

This chapter can be useful for practitioners who wish to promote allyship within his or her workplace. Organizations that want to strengthen their diversity and inclusion climate can consider developing ally training programs and promoting ally culture. Additionally, this chapter can be useful for researchers who wish to study the topic. Currently, there is a dearth of research on allyship specifically within the workplace; this chapter can help future researchers identify areas for empirical exploration.

Details

Diversity within Diversity Management
Type: Book
ISBN: 978-1-78973-172-9

Keywords

Article
Publication date: 5 August 2014

M. Grujicic, J.S. Snipes, R. Galgalikar, S. Ramaswami, R. Yavari, C.-F. Yen, B.A. Cheeseman and J.S. Montgomery

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its…

Abstract

Purpose

The purpose of this paper is to develop multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been improved with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties (strength, in particular) within the weld.

Design/methodology/approach

The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. A critical assessment is conducted of the basic foundation of the model, including its five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: first, electro-dynamics of the welding-gun; second, radiation/convection controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; third, prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; fourth, the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and fifth, spatial distribution of the as-welded material mechanical properties.

Findings

The predictions of the improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To explain microstructure/property relationships within different portions of the weld, advanced physical-metallurgy concepts and principles are identified, and their governing equations parameterized and applied within a post-processing data-reduction procedure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

M. Grujicic, S. Ramaswami, J. S. Snipes, R. Yavari and P. Dudt

The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments…

Abstract

Purpose

The design of the Advanced Combat Helmet (ACH) currently in use was optimized by its designers in order to attain maximum protection against ballistic impacts (fragments, shrapnel, etc.) and hard-surface/head collisions. Since traumatic brain injury experienced by a significant fraction of the soldiers returning from the recent conflicts is associated with their exposure to blast, the ACH should be redesigned in order to provide the necessary level of protection against blast loads. The paper aims to discuss this issue.

Design/methodology/approach

In the present work, an augmentation of the ACH for improved blast protection is considered. This augmentation includes the use of a polyurea (a nano-segregated elastomeric copolymer) based ACH external coating. To demonstrate the efficacy of this approach, blast experiments are carried out on instrumented head-mannequins (without protection, protected using a standard ACH, and protected using an ACH augmented by a polyurea explosive-resistant coating (ERC)). These experimental efforts are complemented with the appropriate combined Eulerian/Lagrangian transient non-linear dynamics computational fluid/solid interaction finite-element analysis.

Findings

The results obtained clearly demonstrated that the use of an ERC on an ACH affects (generally in a beneficial way) head-mannequin dynamic loading and kinematic response as quantified by the intracranial pressure, impulse, acceleration and jolt.

Originality/value

To the authors’ knowledge, the present work is the first reported combined experimental/computational study of the blast-protection efficacy and the mild traumatic brain-injury mitigation potential of polyurea when used as an external coating on a helmet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 412